Rupture mechanism of aromatic systems from graphite probed with molecular dynamics simulations.

نویسندگان

  • Yumin Leng
  • Jian Chen
  • Beifei Zhou
  • Frauke Gräter
چکیده

Intermolecular interactions involving aromatic rings are of pivotal importance in many areas of chemistry, biology and materials science. Mimicking recent atomic force microscopy (AFM) experiments that measured the adhesion forces of single pi-pi complexes, here interactions between pyrene/coronene and graphite have been probed by force-probe molecular dynamics (FPMD) simulations. The pyrene or coronene molecule was connected to a virtual spring through a flexible poly(ethylene glycol) (PEG) linker and was pulled away from graphite in water under constant velocity. Pyrene and coronene showed similar unbinding pathways featuring four states, with a transition and an intermediate state connecting the bound and unbound states in terms of distance and interplanar angles. Transient conformations with tilted orientations (approximately 40 degrees) and with one side of the aromatic structure still in contact with the graphite surface (approximately 70 degrees) were identified as the transition and intermediate states, respectively, similar to previously observed perpendicularly stacked benzene dimers. The distance to transition state x(tr) was determined to be 0.23 +/- 0.03 nm both for pyrene/graphite and coronene/graphite. The complexes share similar unbinding pathways, but coronene binds to graphite more strongly than to pyrene.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical investigation of the elastic scattering of hydrogen (isotopes) and helium at graphite (0001) surfaces at beam energies of 1 to 4 eV using a split-step Fourier method

We report simulations of the elastic scattering of atomic hydrogen isotopes and helium beams from graphite (0001) surfaces in an energy range of 1-4 eV. To this aim, we numerically solve a time-dependent Schrödinger equation using a split-step Fourier method. The hydrogen- and helium-graphite potentials are derived from density functional theory calculations using a cluster model for the graphi...

متن کامل

Mechanical Characteristics and Failure Mechanism of Nano-Single Crystal Aluminum Based on Molecular Dynamics Simulations: Strain Rate and Temperature Effects

Besides experimental methods, numerical simulations bring benefits and great opportunities to characterize and predict mechanical behaviors of materials especially at nanoscale. In this study, a nano-single crystal aluminum (Al) as a typical face centered cubic (FCC) metal was modeled based on molecular dynamics (MD) method and by applying tensile and compressive strain loadings its mechanical ...

متن کامل

Diffusion and drift of graphene flake on graphite surface.

Diffusion and drift of a graphene flake on a graphite surface are analyzed. A potential energy relief of the graphene flake is computed using ab initio and empirical calculations. Based on the analysis of this relief, different mechanisms of diffusion and drift of the graphene flake on the graphite surface are considered. A new mechanism of diffusion and drift of the flake is proposed. Accordin...

متن کامل

Synthesis novel bis-Coumarin derivatives as potential acetylcholinestrase inhibitors: An in vitro, molecular docking, and molecular dynamics simulations study

Alzheimer's disease is an irreversible and progressive brain disorder that slowly destroys memory and thinking skills and ultimately the ability to do the simplest things and can lead to death. Cholinesterases (ChEs) play an important role in controlling cholinergic transmission, and subsequently, by inhibiting CHEs, acetylcholine levels in the brain are elevated. Coumarins have been shown to e...

متن کامل

Designing a new tetrapeptide to inhibit the BIR3 domain of the XIAP protein via molecular dynamics simulations

The XIAP protein is a member of apoptosis proteins family. The XIAP protein plays a central role in the inhibition of apoptosis and consists of three Baculoviral IAP Repeat domains. The BIR3 domain binds directly to the N-terminal of caspase-9 and therefore it inhibits apoptosis. N-terminal tetrapeptide region of SMAC protein can bind to BIR3, inhibit it and subsequently induce apoptosis. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 26 13  شماره 

صفحات  -

تاریخ انتشار 2010